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The Stiltinger-Lovett second-moment condition of electrolyte solutions is 
derived rigorously and simply from only some reasonable (but apparently 
never proven rigorously) assumptions concerning the asymptotic form of 
the direct correlation function and the Ornstein-Zernike equation. The 
derivation suggests that this condition is not the first member of a hierarchy 
of moment conditions and that there exists no simple result for a fourth- 
moment condition. 

KEY W O R D S :  Ornste in-Zemike equat ion ;  direct correlat ion func t ion ;  
electrolytes ; moment  condi t ion ; solut ions ; Coulombic. 

In  1968 Stillinger and  Lovett  (1~ derived an exact second-moment  condi t ion  
for the ionic atmospheres in an  electrolyte solution.  This condi t ion  can be 

wri t ten in the form 

$2 = ~ q, piqtpj h~j(r)4~rr ~ dr = - 3E/2~r/3 (1) 

where q~ and  p~ are the charge and  average concentra t ion,  respectively, of  the 

ith ionic species, hij(r)= hj~(r) is the total  correlat ion funct ion between 

species i and  j ,  E is the dielectric cons tant  of the solvent, and /3  = (kT)-1.  
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This so-called second-moment condition is to be compared with the con- 
ditions of electroneutrality (one for each species), which can be written 
a s  

~ qjpj h~j(r)&rr 2 dr = -q~, i = 1, 2,..., ~ (2) 

The notation and form of Eq. (2) suggest that these conditions of electro- 
neutrality be called the zero-moment condition. 

To our knowledge the important condition, Eq. (1), has never been 
derived generally from within a rigorous statistical mechanical framework, 
although Outhwaite (2) has shown it to be equivalent to a normalization 
condition on the mean electrostatic potential of Debye-Htickel for an ideal 
solvent. In this note we shall derive Eq. (1) rigorously from only the Ornstein- 
Zernike equation and a commonly assumed 5 and reasonable, but apparently 
never proven rigorously, asymptotic form of the direct correlation function 
c~j(r). In addition to being straightforward and rigorous, our derivation 
suggests that Eqs. (2) and (1) are not the first two members of a hierarchy of 
moment conditions. 

We start with the Ornstein-Zernike equation for e components (see, e.g., 
Ref. 3) 

,,,,(,.) = + f r'l)dr' (3) 
/ = 1  d 

and define (.'̀ ) 

f~j(k) = (p,pj)l/2 f [exp(- ik.r)]f~j(r) dr (4) 

By taking the Fourier transform of the Ornstein-Zernike equation and 
denoting the matrix whose i j th element is f~j(k) by f ( k ) ,  w e  find 

~(k) =~(k)  + ~ ( k ) ~ ( k )  

o r  

(5) 

~(k) = ~ - O(k)]-tO(k) (6) 

Now, our first assumption is that, asymptotically, the direct correlation 
function goes simply as the Coulomb potential, i.e., 

eij(r) ~ --flq~qj/~r as r -+ 

5 See, e.g. ,  M o u  and  M a z o  ca) for  a recent  use  o f  this assumption. 

(7) 
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This asymptotic form of  c~j(r) dictates that (s) 

O~j(k) = (pfp~)I/~ c~(r)r sin kr  dr 

.~ 4rr flq~q~(pip~) ~ as k --+ 0 
k ~ e 

(8)  

If, second, k2O~j(k) can be written as a power series in k, we can write 

~(k) = s + do> + e<2>k~ + ... (9) 

where s s etc. are undetermined matrices and the matrix elements of  
c (- 2> are given by 

-c~;-2~ = (4~r~/e)q~qj(p,pj) 112 ( lO) 

For future reference we note that 

where 

_Tr[c(-2~] = N" c(-2~ ~c2 ~ - / _ _ ,  ~t = ( 1 1 )  
t 

= 

is the usual Debye-Hiickel screening parameter. 
Since c (-2~ is singular, it is not possible to expand Eq. (6) in a power 

series in k in a simple manner, i.e., by using the expansion (A + B) -1 = 
A - 1  _ A - I B A - 1  + .... However, from our second assumption (9) and the 
Ornstein-Zernike equation (5) it can be deduced that also ~(k) can be ex- 
panded in (now only positive) powers of k2: 

~(~) = h~o, + h , ~  + h ~ i ~  + ... (13) 

and so the 2nth moment, defined as 

s $2~ = .~ q~qjP~Oj h~j(r)47rr 2~+2 dr (14) 
21 

can be expressed in terms of  h (2~ as 

$2. = (--)n(2n + 1)[ ~ (t',t'j, v,u, ~, (15) 

Using Eq. (10), this can be rewritten as 

(-)"+~(2n + 1)! Tr[s 'h ] (16) $2~ = 4Ir/~ e (-2~ (2,) 
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etc. Since the matr ix c (- 2~ is 
notat ion.  We set 

Substituting Eqs. (9) and (13) into (5) and collecting terms, we find 

0 = c ~-2~ + c(-2~h ~~ (17a) 

h (~ = c (~ + ~c(~ ~~ + ~c(-2~h (2~~ (17b) 

+ s176 + c(~ (2~ + c(-2)h (4) (17c) 
~ ~ ~ 

separable, it is convenient  to introduce Dirac 

so that  c~[2~ = _ (i]c) (clj). 

- Tr[d-2~] = 

and 

so that  

c (-2) --- - ] c ) ( c [  (18) 

In this notat ion Eq. (11) becomes 

Tr[ [e) (c[ ]  = ~ ( i [ c ) ( c l i )  
/ 

= ~ ( c l i ) ( i l c )  : ( c l c )  = ,~2 (19) 
i 

_Tr[cr162 = (c[h(2"'lc) (20) 

(2n + 1)! ( - ) %  (clh(2~)[c) (21) 
$2~ = 4~/3 

We now rewrite Eqs. (17) using the above notation. Equat ion (17a) becomes 

0 = ]c)(c] + [c) (e lh  (~ (22) 

Since [c) v~ 0, this implies that  

_h(~ = - I c )  (23) 

which is just  another  way of  saying that  the zeroth-moment  conditions (2) 
hold. 

Using Eqs. (22) and (19), we also note that  

(c[h(~ = - ( c l c )  : - K  2 (24) 

and so Eq. (21) with n = 0 gives 

So =- - ~%/4*r/3 (25) 

which is an alternative form of  the electroneutrality condition. 
To  find the corresponding expression for $2, we multiply both sides of  

Eq. (17b) f rom the left by (c] and f rom the right by [c) and see that the two 
terms involving the unknown matrix s cancel, so that we are left with simply 

- <c[c) = - (c lc )  (clh(2~]c) (26) 

o r  

(clh(2~tc) =- 1 (27) 
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Substituting this into Eq. (21) with n = 1 gives 

$2 = - 3e/Z~r/3 (28) 

One readily shows that (27) and (28) are equivalent to the second-moment 
condition, Eq. (1). It is interesting to note in this case that the unknown 
matrix c (~ that appears in Eq. (17b) drops out of the final result and so $2 has 
the simple form given by Eq. (28). 

Let us go on and see what the result for S~ will appear like. Again, 
multiplying Eq. (17c) from the left by (c I and from the right by Ic), we find 

( c l  h,2,lc> = <cl - ( c l c )  (29) 

Unlike the case for $2, the undetermined matrix s does not cancel out of 
the', problem, and so $4, which, according to Eq. (21), is related to (e]h~4~]c) 
in the above expression, is not given in terms of known, simple quantities, by 
which we mean quantities that do not depend on the details of the shorter 
range molecular interactions, but only on the long-range (i.e., Coulomb) 
part of it. On the other hand, it is interesting to observe that s  in Eq. (29) 
does drop out just as e ~~ drops out of Eq. (26). It can be shown, however, 
that there is no simple expression in the above sense for S~ as there is for 
So and $2. 

In summary, then, we have derived the Stillinger-Lovett condition of 
electrolyte solutions rigorously from only an asymptotic form of the direct 
correlation function and the Ornstein-Zernike equation. In addition, we 
suggest that this expression results from the fortuitous cancellation of an 
unknown quantity and is not the first member of a hierarchy. 
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